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ABSTRACT

Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine
stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the
assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based
on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the
class of ‘‘bounded cascade’ models. In this model the cloud top and base are fixed, so that all variations in
cloud shape are ignored. The model generates random variations in liquid water along a single horizontal
direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model
reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its
observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of
the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a
direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated.
The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net
horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the meso-
scale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an
order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more
closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus,
horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models.
This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the
smaller-scale variability, where the radiative transfer is more three-dimensional, contributes less to the plane-
paralle] albedo bias than the larger scales, which are more variable. The lack of significant three-dimensional
effects also relies on the assumption of a relatively simple geometry. Even with these assumptions, the inde-
pendent pixel approximation is accurate only for fluxes averaged over large horizontal areas, many photon mean
free paths in diameter, and not for local radiance values, which depend strongly on the interaction between
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neighboring cloud elements.

1. Introduction

The purpose of this paper is to consider the 3D ra-
diative effects of cloud inhomogeneity, as prescribed
by a “‘bounded cascade’’ fractal model, which simu-
lates the horizontal variability observed in marine stra-
tocurnulus clouds. This model was introduced in earlier
work (Cahalan et al. 1990; Cahalan and Wiscombe
1993) and was based on studies of cloud fractal prop-
erties (Cahalan and Joseph 1989; Cahalan and Snider
1989). It was recently used to compute the bias asso-
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ciated with plane-parallel estimates of area-averaged
albedo (Cahalan et al. 1994, hereafter C1). Barker
(1992) discussed the determination of this plane-par-
allel albedo bias from in situ cloud measurements. In
Cl1 it was estimated from surface microwave measure-
ments of liquid water path in California marine stra-
tocumulus and found to be approximately 0.1, or 15%
of the typical albedo of 0.6, and generally larger than
the bias associated with cloud fraction for the available
summertime observations. (We consistently follow the
convention of C1 that the absolute bias is expressed as
a fraction, while the relative bias is given in percent.)
Cahalan et al. (1994) employed the independent pixel
approximation (IPA), which neglects net horizontal
photon transport. Here the IPA results are compared to
those derived from 3D Monte Carlo simulations of the
cloud radiative processes. The resulting errors in the
TPA depend on the scaling properties of the bounded
model, which have been studied in detail by Marshak
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et al. (1994) and compared to other fractal models in
Davis et al. (1994).

For cloudy atmospheres, the problem of computing
radiative fluxes at visible and near-IR wavelengths de-
fies easy or analytic solutions. Cloud multiple scatter-
ing, when combined with vapor and droplet absorption
processes, is traditionally. modeled using one or more
simplifying assumptions: namely, that 1) a cloud layer
is plane parallel in extent, 2) a cloud layer is homo-
geneous in composition, and 3) water vapor and/or
droplet absorption is negligible or divisible into rela-
tively few gray spectral bands. With such assumptions
the radiative transfer problem can be solved by appli-
cation of well-established procedures such as discrete
ordinates (Chandrasekhar 1960) or adding/doubling
methods (Hansen 1971; Hansen and Travis 1974; King
1983). Extensions of these ‘‘exact’” methods to more
general cloud geometries (e.g., Stephens 1988a,b) in-
cur substantial penalties in terms of computational ef-
fort and numerical complexity, though simple exten-
sions short of full Monte Carlo simulation have been
recently applied to advantage (e.g., Evans 1993; Ga-
briel et al. 1993).

The IPA is perhaps the simplest extension of plane-
parallel radiative transfer. It ignores net horizontal pho-
ton transport, as does plane parallel, but includes hor-
izontal inhomogeneities in the cloud parameters. IPA
computations require knowledge of the one-point prob-
ability distributions of cloud parameters, as well as
plane-parallel results for parameter values having
significant probability. This approach was used in
Ronnholm et al. (1980), Harshvardhan and Randall
(1985), Stephens et al. (1991), and a wide variety of
remote sensing studies. These studies, however, did not
estimate the errors in the IPA, which requires a model
for the spatial pattern of the inhomogeneities. An early
discussion of such errors based on an additive (normal)
random surface model is in Mullamaa et al. (1975).
More recently there has been increasing evidence that
liquid water in clouds has a multiplicative lognormal-
like structure, with power-law structure functions and
highly skewed probability distributions. Cahalan et al.
(1994) found that the albedo bias of bounded cascades
is sensitive to the skewness, and thus the nonnormal
nature, of the liquid water distribution by assuming the
IPA. Here we show that the results of C1 are valid by
showing that the IPA accurately estimates the albedo
bias of bounded cascades, even though the IPA errors
are often locally quite large. We also confirm that the
IPA does not provide a good approximation for the
albedo bias of singular cascades, as found earlier by
Cahalan (1989) and Lovejoy et al. (1990).

Monte Carlo radiative transfer models have become
common tools whose algorithmic details are infre-
quently documented in the scientific literature. The
Monte Carlo technique is discussed in some generality
for radiative transfer applications by House and Avery
(1969). Specific procedures for basic forward and
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backward Monte Carlo simulations are well described
by Kattawar (1979). A mathematically rigorous treat-
ment can be found in Marchuk et al. (1980). More
recently, special techniques for uniform sampling and
more rapid convergence in moderately thick clouds
have been documented by O’Brien (1992).

A number of Monte Carlo studies have addressed
atmospheric problems, including cloud geometries
other than plane parallel. Harshvardhan (1991) has re-
viewed some of these. McKee and Cox (1974), Davies
(1978), Weinman and Harshvardhan (1982), and Da-
vies et al. (1984) focused on the effects of finite cloud
extent and cloud sides on cloud field albedo, bidirec-
tional reflectivity, and absorption. In these- studies,
clouds were generally assumed to be homogeneous Eu-
clidean objects such as cubes. Coakley and Kobayashi
(1989) studied the albedo biases associated with such
broken cloud fields. Cahalan (1989) discussed Monte
Carlo albedo estimates for a multifractal model, the
“‘singular model,”’ showing that cloud fields with hor-
izontally variable liquid water always have lower av-
erage albedo than plane-parallel clouds having the
same total liquid water, and that the average albedo is
insensitive to variability on scales smaller than a photon
mean free path. Lovejoy et al. (1990) studied the as-
ymptotic properties of a multifractal cloud in the limit
of large optical thickness, showing that the transmit-
tance approaches zero more slowly than for plane-par-
allel clouds. Kobayashi (1991) confirmed that finite

clouds and clouds with horizontal variability have

lower reflectance than uniform clouds with comparable
liquid water. Stephens et al. (1991) considered the
complementary situation of a layer that is horizontally
uniform but statistically distributed in the vertical.
Barker and Davies (1992 ) compared the power spectra
of satellite radiances with those of radiances derived
from Monte Carlo to explain observed scaling viola-
tions.

The method of Monte Carlo simulation is a well-
established tool for studying specific cloud geometries,
particularly finite three-dimensional clouds. The meth-
od’s principal advantage is that results are faithful to
the detailed physical cloud model, so that flux or ra-
diance estimates are made without further approxima-
tions being applied to the transfer equation. Other
methods, such as plane-parallel or discrete angle meth-
ods, while simplifying the radiative transfer problem,
introduce approximations tending to reduce the degrees
of freedom of the radiation field and thus fail to fully
treat cloud inhomogeneity, an essential theme of this
study. The Monte Carlo method has two distinct dis-
advantages, however: 1) calculations can be compu-
tationally expensive, and 2) computed radiative quan-
tities are subject to statistical error. These disadvan-
tages are overcome by appropriate use of parallel/
vector processing computer platforms and by devel-
opment of techniques to reduce the computational de-
mands of using fine geometrical grids, as discussed in
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detail below. Estimates of the statistical uncertainties
for typical simulations will also be given.

The plan of this paper is as follows. Section 2 sum-
marizes aspects of the fractal cloud model implemented
here. Section 3 discusses some details of the Monte
Carlo radiative transfer model. Section 4 summarizes
the results of the full 3D radiative calculations and
emphasizes comparison with the simpler IPA. Section
5 discusses our general conclusions. Finally, appendix
A documents various computational enhancements,
which greatly improve model efficiency, and appendix
B details the statistical errors in both the Monte Carlo
and fractal aspects of the model.

2. Fractal cloud geometry

The fractal cloud model discussed in C1 invokes a
random cascade process to distribute liquid water non-
uniformly across many (typically 2'?) horizontal pix-
els. (As we will see, what is called a ‘‘pixel’’ here is
actually an infinitely long cloud street, but in the spirit
of remote sensing, we will take it to mean the smallest
resolved cloud element.) The drop distribution is as-
sumed uniform, so that the scattering vertical optical
thickness is linearly proportional to the vertically in-
tegrated liquid water path in each pixel. The cloud is
constrained to lie in a horizontal slab between planar
upper and lower boundaries, the cloud top and base.
Zero surface albedo is assumed, and the side bounda-
ries are periodic, so that photons exiting one side enter
the other. The cloud field scattering optical thickness
is a random function of horizontal position, with sta-
tistical properties that depend on the mean vertical scat-
tering optical thickness and two fractal parameters. The
fractal parameters are determined by observations of 1)
the variance of the logarithm of vertically integrated
cloud liquid water, and 2) the exponent of the power
spectral density function of the liquid water, which de-
termines how the variance is partitioned in wavenum-
ber. The random cascade process redistributes the
cloud liquid water inhomogeneously in one direction,
while leaving it uniform in the other horizontal direc-
tion, creating a ‘‘cloud street’” structure like that in Fig.
1. This is a particular cloud field realization with spec-
ified total liquid water. Other cloud field realizations
are generated using different random number se-
quences for the cascade process. In order to character-
ize the average radiative effects, the Monte Carlo ra-
diative transfer model is applied to each cloud field
realization, and the resulting fluxes are averaged over
all realizations.

The cascade begins with a slab of uniform vertical
thickness, with a large but finite horizontal width and
infinite horizontal length, and proceeds as follows: the
slab is divided in half lengthwise; one half is chosen at
random with equal probability, and a fraction f, = fof
liquid water is transferred into that half from the other
half. The same process of subdivision and transfer is
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then carried out within each half, transferring a reduced
fraction f| = fc, with ¢ < 1, between each pair of quar-
ter slabs; the same is then done within each quarter,
transferring f, = fc* between eighths, and so on. The
microphysical properties are not varied so that the scat-
tering optical thickness in each section is proportional
to the liquid water there. In the bounded model the
parameter c is chosen to be 27'"? ~ 0.8, which gives a
k3" power spectrum, and the parameter f is deter-
mined by the variance of the logarithm of the vertically
integrated cloud liquid water, as discussed in detail in
C1. A typical value is f = 0.5, based on observations
of California marine stratocumulus. In the singular
model we set ¢ = 1, so that the same fraction is trans-
ferred at each cascade step. As shown in Cl1, the sta-
tistical moments develop essential singularities in the
limit ¢ ~ 1, so that the power spectrum and other sin-
gular model properties cannot be obtained from the
bounded model by analytic continuation and are qual-
itatively distinct. '

The same approach can generate variability in the
other spatial directions. For a 2D cascade, one begins
with a slab that is large but finite in both horizontal
directions. It is divided in half along both length and
width, making four equal quarter slabs. One quarter
slab is chosen at random, and a fraction fy = fis trans-
ferred to one of the other three, also chosen at random,
and the same fraction is transferred between the re-
maining two, with the direction chosen at random. The
same two values of liquid water obtained at the first
step of the 1D cascade appear twice at the first step of
the 2D cascade. The process is continued by treating
each quarter slab the same way, transferring f, = fc
among sixteenths. Each value occuring at the nth step
of the 1D cascade occurs at 2" locations in the 2D cas-
cade, thus generating the same one-point probability
distribution and the same IPA fluxes. Monte Carlo
fluxes for a 2D cascade are shown in Cahalan (1994).
Vertical variability may be generated in the same way,
with either a uniform or linearly increasing mean ver-
tical profile. In section 4 we give results for the 1D
model and then qualitatively discuss our expectations
for 2D and 3D generalizations.

Table 1 compares the bounded and singular models
described above. In the singular model, the fractions f,
do not vary with the cascade step n, and in the limit
n — = the liquid water is confined to a set of singular-
ities of various strengths, for which one can define a
dimension function and singularity spectrum, which are
analytic functions of the parameter f. The optical thick-
ness distribution is unbounded. The power spectrum in
the singular model follows a power law with an ex-
ponent that is a simple function of f, but always be-
tween 0 and —1. [ This model was studied in Cahalan
(1989).] By contrast, in the bounded model the frac-
tions f, decrease with the cascade step, produce an op-
tical thickness distribution strictly bounded both above
and below, and a power-law spectrum with an exponent
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FiG. 1. Vertical cross section through a cloud field that has several cloud streets identical in
geometry and microphysical properties but different in vertical optical thickness. The streets rep-
resent the smallest resolved elements after a certain number of cascade steps of a fractal model
and are referred to in the text as pixels. In the realization shown here, the optical thicknesses were
assigned by three iterations of the cascade process, with horizontal average thickness 7, = 16 and
fractal parameter f = 0.6. The reflectance R shown with each optical thickness is that of the
independent pixel approximation, which neglects net horizontal photon transport. Also shown are
possible paths a photon can take during a Monte Carlo simulation, which can generate deviations
from the independent pixel reflectances.

that is independent of f and approximately equals —3

when ¢ = 0.8, as observed (Cahalan and Snider 1989; (1994).

see also Davis et al. 1994). These results are derived
in C1, and a detailed ‘discussion of the scaling proper-

TABLE 1. Comparison of cascade models.

ties of the bounded model is given in Marshak et al.

Our use of a multiplicative cascade to generate cloud
structure has a twofold motivation: 1) the mesoscale

Quantity

Singular model

Bounded model

Cascade fractions
Maximum thickness
Wavenumber spectrum
Plane-parallel bias
Independent pixel bias

fa=const =f

Tmax =

S(ky ~ k™! or flatter
20%

—10%

fu=fc",c=~08

Tmax = Ty exp[f/(l - C)]
S(k) —~ k—S/3

15%

<1%
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variability in cloud liquid water is thought to be gen-
erated by a two-dimensional upscale energy cascade
forced by small-scale convection (see, e.g., Gage and
Nastrom 1986), and 2) the mesoscale-averaged radia-
tive properties that we wish to derive depend on the
moments of the optical thickness distribution, and in
particular its skewness, which cannot be generated by
an additive model. For example, a simple Fourier series
with random amplitudes could generate the observed
k3" spectrum, but the liquid water would then have a
Gaussian distribution. The cascade model also gener-
ates a k~°’? spectrum but has the advantage of produc-
ing a skewed lognormal-like distribution, which more
closely resembles the observations (see Cl1).

Figure 1 shows a cross section through one realiza-
tion of a bounded cascade and three relatively simple
photon paths. The realization was generated from three
cascade steps, since 2 = 8 values of scattering optical
thickness are shown. Photon A scatters in the forward
hemisphere three times then exits downward; photon B
scatters backward once then exits upward; and photon
C enters the cloud behind the plane of the paper, scat-
ters sideways into the plane of the paper, then forward
once and backward once, and finally exits the cloud
upward. According to this three-photon sample, the
cloud reflectivity is 24 and the transmissivity is 14. Re-
sults given below are based on 4 X 10° photons, dis-
tributed over 2'? = 4096 pixels with scattering optical
thicknesses' generated from 12 cascade steps. Most
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photon paths are much more complex than those shown
here.

Table 2 summarizes the meaning and typical values
of various parameters used in this paper. The table
gives the mean vertical scattering optical thickness T,
and total horizontal cloud field optical thickness 7.
This implies a mean single-pixel horizontal scattering
optical thickness of 7,/4096, since there are 4096 pix-
els. The pixel aspect ratio is defined as the ratio of
vertical to horizontal pixel size, which is also the ratio
of vertical to horizontal pixel scattering optical thick-
ness. All pixels within the cloud have the same geo-
metrical size and aspect ratio, typically between 1 and
100. Single-pixel horizontal and vertical scattering op-
tical thickness scale with the cascade model scattering
opacity function. Thus, the optical thickness values can
be translated into physical units by assuming a value
for the extinction, typically 30 km™'. :

3. Simulation model: Direct method

a. Concept of local optical density, phase function,
solar parameters

The first task in simulating the radiation field is to
specify cloud droplet spatial structure. For this study,
we have assumed that horizontal inhomogeneity is re-
flected solely in the density of cloud droplets, and thus
their size distribution is uniform. The scattering phase

TABLE 2. Primary quantities and symbols.

Symbol ) Typical values

Quantity
fractal cascade
Variance parameter f 0.5 (0.8 global)
Spectral parameter c 0.8 (for k~>* spectrum)
macrophysical _
Sun angles 8y, do 60°, 0°
Mean vertical optical thickness Ty 1-16
Total horizontal optical thickness Th 409.6-40 960
Pixel vertical optical thickness T 0.1-100
Pixel horizontal optical thickness 7,/4096 0.1-10
Pixel aspect ratio 7,/ (1,/4096) 1-100
Mean vertical liquid water path W = 7,/0.15 10-100 g m™
microphysical
Asymmetry parameter g 0.85
Single scattering albedo wo 0.9-1.0
0,0 0°-180°, 0°-360°

Scattering angles

Reflectance, transmittance, absorptance
Independent pixel (ip) estimates
Plane-parallel (pp) estimates

pp biases (R, — R, €tc.)

ip biases (R, — R, etc.)

cloud/solar fiux ratios

R, T, A 0.5,0.5, 0.0
Ry, Ty, Ajp 0.5,0.5,0.0

ve> Top> App 0.6,0.4, 0.0
ARy, ATy, AAy, 0.1, -0.1, 0.0
AR, 0.01, 0.01, 0.01

ip» ips ip
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function and single scattering albedo are invariant,
while cloud optical thickness is highly variable.

By stopping after a finite number of cascade steps
(typically 12), the fractal model determines a fength
scale over which droplet density is nearly constant and
the local scattering optical density function is well de-
fined. The spatial structure underlying the Monte Carlo
model therefore consists of rectilinear pixels, which are
small enough to have uniform cloud optical properties
within each pixel. This assumption of homogeneity at
small scales seems reasonable but should be tested
against better in situ data than has so far been available.
The pixels are fixed in size with a specified vertical to
horizontal aspect ratio. The cloud field is one pixel
thick, that is, uniform in the vertical direction between
cloud base and top but with horizontal inhomogeneity
embodied in the cloud scattering optical density, which
varies pixel by pixel in one horizontal direction. (The
scattering optical density function is based on the frac-
tal model but, for the purposes of the Monte Carlo sim-
ulation, could be any function of one horizontal coor-
dinate with the constraint that it be slowly varying on
the scale of a single pixel’s horizontal extent. The frac-
tal cascade model is just one such cloud representa-
tion.)

Radiative calculations are done using a droplet single
scattering phase function specified by a Henyey-
Greenstein function with asymmetry parameter 0.85.
Solar radiation uniformly illuminates the cloud top and
is taken to be incident at some angle from the zenith
(typically 60°) in the vertical plane defined by the di-
rection of cloud inhomogeneity. This choice of azi-
muthal angle means that each photon moves, at the
outset, in the direction of greatest horizontal inhomo-
geneity, allowing it to sample regions of varying scat-
tering optical density. The opposite choice, an azimuth
angle corresponding to the horizontal direction with
uniform cloud properties, is not chosen because it
would exaggerate cloud street effects, giving results
less representative of realistic 3D variability.

b. Forward photon simulation model

The Monte Carlo method employed here is a direct
method, that is, a straightforward simulation of photon
trajectories. It is particularly well suited to fast calcu-
lations of radiative fluxes to which a moderate to large
percentage of all photon trajectories actually contrib-
ute, as in the determination of mean cloud field albedo.
Photons enter initially at cloud top; an equal number
are incident on each cloud pixel, and the actual point
of incidence within each pixel top is randomly selected.
Each photon proceeds through a series of scatters to
emerge from either cloud top or cloud base. (Those still
remaining in the cloud after 500 scatters are assumed
to exit the pixel within which they last scattered, with
equal probability of exiting up or down, as discussed
below with regard to Fig. 4.) The simulation is conser-
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vative; that is, no photons are explicitly absorbed or
otherwise terminated within the cloud. Instead, the
scattering optical pathlength traveled by each photon
within the cloud is recorded so that this quantity, to-
gether with the single scatter albedo, can be used to
compute the absorption pathlength and thereby esti-
mate the probability of absorption by the cloud at any
wavelength. We first consider conservative scattering;
the treatment of nonconservative clouds is discussed
later.

Within the cloud, the Monte Carlo photon simulation
proceeds as a sequence of repeated primitive events.
These are of three distinct types: 1) crossing a pixel
boundary, 2) termination of a straight path segment at
a scatter event, and 3) emergence from a scatter event
with a new trajectory. While events of type 2 and 3 are
actually part of a single physical scattering process, this
event structure serves to emphasize the simplicity of
the Monte Carlo simulation. Photons exiting the cloud
entirely are a special case of event 1.

The simulation proceeds by determining the distance
to the next scatter point and the direction of travel after
scattering then repeating both steps in succession. The
scattering optical pathlength 7 between successive scat-
ters is a random variable chosen from an exponential
distribution having the simple form

p(7) = exp(—7). (3.1)

Equivalently, in terms of the probability X that the scat-
tering optical path is greater than 7,

7= —log(X), (3.2)

where X is selected from a uniform distribution on the
interval 0 < X < 1. Thus, a single random number X
locates the next scattering event by tracing the photon
trajectory through a sufficient number of pixels to ac-
cumulate the corresponding scattering optical path-
length 7. [We typically use the system-provided ran-
dom number generator but sort to eliminate correla-
tions. Press et al. (1992) give an excellent review of
various random number techniques.]

The included angle of scattering ® is determined by
identifying the cumulative integral of the Henyey-
Greenstein phase function with a second random num-
ber Y, again uniformly distributed on the unit interval,
0 < Y < 1. This gives

+ 82— [(1 —gH/(1 — g +2gY)]?
2g ’

cos(®) = !
(3.3)

Finally, the scattering azimuthal angle ¢ is chosen ran-
domly using a third random number Z with

® =277, (3.4)

and Z uniformly distributed on the interval 0 < Z < 1.
These values of ® and @ are defined with respect to
the incident photon direction. A simple rotation gives
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their equivalents in the coordinate system of the cloud
field. Once the new direction is known with respect to
the cloud, its projection onto the normals defining each
surface of the cloud pixel determines Wthh face the
photon will exit.

As each event occurs, key quantities are recorded,
including photon position, direction, and accumulated
pathlength; a logical flag marks photons that have ex-
ited at the upper or lower boundary. In practice, in order
to take advantage of vector computer capabilities, it is
better to treat batches of many photons together. The
entire batch is followed through successive orders of
scattering until most have exited the cloud. The exiting
photons are ‘‘frozen’’ in place at the cloud base or
cloud top to await completion of the remaining photon
trajectories.

¢. Results obtained from binning photons on exit

Cloud field albedo in the nonabsorbing case is esti-
mated by counting all photons that emerge from the
cloud top, where each photon represents a fixed fraction
of the incident solar flux. Exiting photons are binned
according to exit position, emergent direction, and scat-
tering optical pathlength traveled within the cloud.
(Other quantities such as entry position, order of scat-
ter, and physical distance traveled are possible alternate
criteria for binning.) Because each photon represents a
single flux quantum and all contribute to conservative
reflection or transmittance, the simulation is quite ef-
ficient in modeling cloud field albedo and the radiative
energy budget. The spatial and angular distribution of
_ scattered radiation is also computed based on individ-
ual spatial/angular bin fluxes, but these are subject to
much greater statistical errors associated with propor-
tionately smaller photon samples.

d. Treatment of nonconservative medium

Since the Monte Carlo model outlined above is con-
servative, all photons that enter the cloud top exit some-
where, contributing to the reflected or transmitted
fluxes. All photons carry the same fraction of the in-
cident flux throughout their lifetimes. The primary ad-
vantages of this method are its computational simplic-
ity and that statistical errors are easily estimated. All
flux estimates are represented by simple counting, with
errors generally of order n~"/?, where n photons con-
tribute to a flux estimate, as discussed in detail in ap-
pendix B.

Absorptlon is not 31mulated explicitly because that
would require new simulations for each absorbing
wavelength. Droplet and vapor absorption vary with
wavelength by many orders of magnitude, while scat-
tering cross section and phase function are much less
sensitive to wavelength. A direct Monte Carlo model
with droplet or vapor absorption would require re-
peated simulations using different single scattering al-
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bedos. Instead, we follow Davies et al. (1984), who
observed that for flux estimates each photon exiting the
medium should be weighted in proportion to its actual
probability of survival, which is simply a function of
the absorption pathlength traversed within the cloud.
Thus, conservative model flux estimates are modified
at each wavelength by photon survival probability. The
reflectance (reflected flux over incident flux) is

R=Zexp[—1;woﬂ]/Fo,  (3.5)
i 0

where single scattering albedo w, is implicitly a func-
tion of wavelength, the index i denotes individual pho-
tons that contribute to cloud reflectance by exiting at
cloud top, 7; is the scattering optical pathlength tra-
versed by photon i, and F, is the incident solar flux.
The absorption optical pathlength has been computed
from the scattering optical pathlength using the ratio of
absorption to scattering (1 — wo)/wj. Photons exiting

-with comparable scattering optical pathlengths will

have the same probability of survival, so they are nat-
urally grouped together to form a pathlength distribu-
tion function p(7). Reflectance at each wavelength is
determined from this distribution function according to

v L
R=fp(r)exp[~ wwo
0

Hence, reflectance at all wavelengths is determined
from the pathlength distribution of a single Monte
Carlo simulation.

T]d'r. , (3.6)

4. Results

For convenience, we will separate the total bias in
the area-average reflectance into two components, as
follows:

bias = Ry, — R = AR,, + ARy,

where the first term on the rhs, the plane-parallel bias,
is given by the plane-parallel reflectance R,, minus the
IPA reflectance R;, and was discussed in C1 and shown
to be quite large. We will focus here on the second
term, the independent pixel bias, given by the IPA re-
flectance minus the area-average reflectance R, as es-
timated by Monte Carlo. We will see that this bias is
much smaller than the plane-parallel bias, but only
when averaged over a complete cloud field, 100 km or
more in extent, and not for individual pixels.
Before presenting results for fully inhomogeneous
clouds, it is important to have a clear idea of the impact
of 1) Monte Carlo noise and 2) horizontal photon trans-
port. To that end, let us first consider the Monte Carlo
reflectance estimates for a cloud field with a small num-
ber of uniform, plane-paralle]l regions, where the
“‘true’’ reflectance in each region is known from plane-
parallel theory. In particular, consider a plane-parallel
slab consisting of 4096 geometrically identical pixels
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with mean vertical optical thickness 7, = 16 and hor-
izontal optical thickness 1.6 (i.e., aspect ratio 10),
so that the total horizontal optical thickness is 7,
= 6553.6. Assuming a typical extinction -of 30 km™’,
the physical dimensions of the cloud are thickness
= 533 m and width = 218 km. By taking 3 cascade
steps of the bounded model with f = 0.6, ¢ = 0.8, we
divide this into eight cloud streets each 27.3 km wide,
one realization of which is shown in Fig. 1. Each
cloud street has identical microphysical properties,
with wy = 1.0, Henyey —Greenstein phase function with
g = 0.85, and the sun at 8, = 60°, ¢, = 0°.

Figure 2a shows the reflectances of the cloud de-
scribed above, averaged over 8-pixel cells, as estimated
by the Monte Carlo method discussed in the previous
section, using 4 X 106 photons, or nearly 8000 photons
per cell. Away from their edges, the cloud streets
should have constant reflectances equal to their plane-
parallel values. If we compute the plane-parallel reflec-
tance from the optical thickness of each cell and sub-
tract the Monte Carlo reflectance, we obtain the inde-
pendent pixel bias, which is the lower line in Fig. 2a.
The small fluctuations seen here, those not near the
edges of the cloud streets, are due to Monte Carlo noise.
As shown in appendix B, the standard deviation of this
noise lc/i;ecreases with n = the number of photons/pixel
as n
standard deviation by a factor of =~ 3, to the ob-
served value of ~0.01. Averaging over all 512 cells
would further reduce this by a factor of V512 ~ 23, to
less than 2% of the 0.09 plane-parallel albedo bias es-
timated in C1.

Figure 2a shows dramatic deviations from the IPA
estimates at the cloud street edges. For example, the
second street from the right has an average reflectivity
of ~0.9 but at the sunward edge the reflectivity exceeds
1. Similarly, the two other streets, which are brighter
than their neighbors, also have enhanced brightness at
their sunward edges. Each of these brightness enhance-
ments is also accompanied by a darkening at the edge
opposite the sun. Since each downward spike in the IP
bias has its accompanying upward spike, the edge ef-
fects tend to cancel out in the overall horizontal average
(though not identically ), so that the independent pixel
bias is relatively small. Thus, the IPA produces a highly
accurate average reflectance, even though the local val-
ues have large errors.

Let us now consider a fully inhomogeneous cloud.
Figure 2b shows the reflectivity of one realization of
the bounded model after 12 cascades, computed with
the same parameters as in Fig. 2a. The sun is again 60°
to the left of the zenith, and the upper curve shows the
Monte Carlo reflectivity, while the lower curve is the
independent pixel bias. This cloud was generated from
the one in Fig. 2a by simply continuing the cascade for
nine further steps. Thus, the Monte Carlo noise in Fig.
2b has the same magnitude as that of Fig. 2a, but now
much larger fluctuations of both signs appear in the
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FiG. 2. Monte Carlo pixel reflectance and independent pixel bias
for (a) the eight cloud streets of Fig. 1 and (b) 4096 cloud streets.
Each cloud street has identical microphysical cloud properties with
wo = 1.0, Henyey—Greenstein phase function with g = 0.85, and
identical geometrical thicknesses but different vertical optical thick-
nesses 7, with horizontal mean ¥ = 7, = 16. The sun is 60° to the
left of the zenith. In (a) each street is approximately 30 km wide and
consists of 512 identical pixels. Each plotted value in (a) and (b) is
an average over cells consisting of 8 pixels. The standard deviation
of the Monte Carlo noise decreases with the number of photons/pixel

as n7"2 so that averaging over 8 pixels decreases the standard de-

viation by a factor of almost 3. Overall 4 000 000 photons are
tracked.

independent pixel bias over the whole cloud, due to the
large number of edges that occur throughout the cloud.
As in Fig. 2a, the negative spikes associated with the
sunward edges are always accompanied by positive
spikes, making the horizontal-mean independent pixel
bias closely approach zero. In this case, the overall in-
dependent pixel bias * the standard deviation is
—0.0038 *= 0.033, whichis 0.66% + 5.7% of the mean
IPA albedo of 0.5743. This should be compared to the
plane-parallel albedo bias. Since R, (7, = 16) =~ 0.69
and R;, =~ 0.57, the plane-parallel bias ~0.12, or 17%
of the plane-paralle] albedo. Thus, the overall indepen-
dent pixel bias is negligible. Again, however, we cau-
tion that the neglect of horizontal photon transport is
not justified for local reflectance values, as is evident
from Fig. 2b. .

We now consider the horizontal average of the in-
dependent pixel bias for a large number of experiments
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FiG. 3. The horizontal-average independent pixel bias, namely, the area-average reflectance computed by the inde-
pendent pixel approximation minus that computed by Monte Carlo, versus the number of cascade steps in the fractal
cloud model. The singular fractal model has f = 0.6, ¢ = 1, while the bounded model has f = 0.6, ¢ = 0.8. For both
models, the biases are plotted with a =20 error bar, where o is the standard deviation of the local pixel reflectances
about the mean, so that the width of the error bar gives the 95% confidence interval. Curves in (a) and (b) show the
absolute and relative independent pixel bias, respectively, for a mean cloud optical depth of 7, = 16, while curves (c)
and (d) give the analogous results for 7, = 1. All curves are for conservative scattering (wo, = 1.0) with g = 0.85, pixel

aspect ratio 10, and sun angles 8, = 60, ¢, = 0.

like those illustrated in Fig. 2. Figure 3 shows the in-
dependent pixel bias versus the number of cascade
steps for the two fractal cascade models described in
section 2: the singular model, with f = 0.6, ¢ = 1, and
the bounded model, with the same value of fbut with
¢ = 0.8. For each of these two models, the independent
pixel bias is plotted with an error bar of +20, where ¢
is the standard deviation of the reflectances about the
mean, so that the error bar gives the 95% confidence
interval. Curves in panels a and b show the absolute
and relative independent pixel bias for a mean cloud
optical thickness of 7, = 16. Curves ¢ and d give the

same results for 7, = 1. All curves are for conservative:

scattering (wo = 1.0) with g = (.85, pixel aspect ratio
= 10, and the sun at 8, = 60, ¢, = 0.

For the bounded model, it is clear from Fig. 3 that
AR, is always less than 1% for both thick and thin
clouds and is therefore negligible compared to AR,;,.
The IPA can therefore safely be used to estimate area-
average fluxes for the bounded model. But for the sin-
gular model, AR;, reaches several percent after 12 cas-

cades and is therefore comparable to AR,,. Note that
it is negative, which means that the IPA underestimates
the reflectivity. For the singular model, then, three-di-
mensional radiative effects cannot be neglected in es-
timating area-average fluxes. (Recall, though, that the
singular model gives the wrong power spectrum.) The
singular model and its relatives have been thoroughly
studied previously (see, e.g., Cahalan 1989; Lovejoy et
al. 1990), so for the remainder of this paper we restrict
our focus to the bounded model. '

In order to generalize the results shown in Fig. 3 to
the absorptive case, we need the pathlength distribution
for conservative scattering, as in Eq. (3.6). Figure 4
illustrates this distribution for the same parameters used
in Figs. 3a and 3b. The upper dotted curve is the dis-
tribution of pixel optical thicknesses, showing signifi-
cant fractions between about 0.5 and 200, while the
lower dotted curve is the distribution of transmitted
photon paths, with no significant fractions between 0.5
and 1.0, but with a significant number above 200. The
peak at 500 is an artifact of the imposed cutoff at 500
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FiG. 4. Pathlength distributions for conservative scattering in the
bounded cascade cloud field for the same parameters used in Fig. 3a.
The lower dotted curve is for transmitted photons, while the lower
solid curve is for reflected photons, and the upper solid curve is the
distribution for all photons, which is the sum of the two lower curves.
Shown for comparison is the upper dotted curve, which is the distri-
bution of vertical optical thicknesses in the cloud field.

scatters. The lower solid curve is the distribution of
reflected photon paths and converges with the distri-
bution of transmitted photons above 200, thus justify-
ing our assumption that ‘‘residual’’ photons are equally
likely to exit up or down. The sum of the distributions
for reflected and transmitted photons, the two lower
curves, of course gives the distribution of all photons,
which is the upper solid curve.

By applying Eq. (3.6), with wp = 0.99 and 0.90, to
the conservative results shown in Figs. 3a and 3b, with
the path distributions shown in Fig. 4, we obtain the
absorptive results shown in Fig. 5. As in Fig. 3, this
shows the independent pixel bias in the bounded model,
but now for nonconservative scattering, showing not
only reflectance (R) but also transmittance (7T') and ab-
sorptance (A). As in Fig. 3, the area-average biases are
shown with *=2¢ error bars, giving the 95% confidence
interval. Again, as in the conservative case, AR;; is al-
ways less than 1% for both weak and strong absorption
and is therefore negligible compared to AR,,. The
same is true for the transmittance and absorptance.

Figure 6 shows the independent pixel bias, defined
as above, but given now as a function of sun angle, for
various aspect ratios, and for conservative scattering.
The bias increases with aspect ratio, since this spreads
out the local errors horizontally, but the relative error
remains less than 1%. The IPA error is larger for larger
f (not shown), but it remains small compared to the
plane-parallel bias, which also increases with f, as
shown in C1. Note that the largest error is at an angle
of about 60°, a value typical for the FIRE observations
of marine stratocumulus. Even in this case, however,
AR;, remains much smaller than AR,,,. For this type of
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model, then, three-dimensional radiative effects can
safely be neglected in estimating the mesoscale-aver-
aged reflectance. Plane-parallel estimates, which de-
pend only on 7,, can easily be in error by more than
10%, but the error can be reduced to less than 1% by
including higher moments of the distribution of pixel
optical thickness, as shown in C1.

How might the above results change in the 2D or 3D
generalizations of the bounded cascade? The inclusion
of vertical or alongstreet variability allows photons to
potentially diffuse around peaks in cloud density. As a
result, the local errors in the IPA become more spread
out than those in Figs. 2a and 2b, without changing the
fact that they occur with both signs and tend to cancel
when averaged together. As in 1D, the IPA errors tend
to be of one sign when then sun is closer to the zenith
but are then much smaller locally as well as in the area
average. IPA errors for a 2D case are shown in Cahalan
(1994). We have not yet included vertical variability
but suspect that it is less important than the horizontal
in the case of marine stratocumulus, because most of
the liquid water is within a photon mean free path of
the cloud top, and experience with Monte Carlo com-
putations shows that scales smaller than a photon mean
free path are smoothed out by the photon field (Cahalan
1989). This speculation requires further study, which
we leave for a later time.

5. Conclusions

In order to obtain what is probably a lower bound
for the bias in plane-parallel estimates of mesoscale-
averaged cloud albedo, the plane-parallel albedo bias
has been estimated for marine stratocumulus clouds,
which are the closest cloud type to plane parallel. The
estimate employs a model that reproduces the observed
mean, variance, and skewness of the vertically inte-
grated cloud liquid water, as well as its observed wave-
number spectrum, which is approximately a power law,
k™33, An earlier paper (Cahalan et al. 1994, referred
to here as C1) estimated the bias assuming the inde-
pendent pixel approximation, or IPA, which neglects
horizontal photon transport. The IPA found an absolute -
bias on the order of 0.09, or 15% of the plane-parallel
albedo. The present paper estimates the additional bias
due to the IPA assumption using a Monte Carlo method
and finds it to be less than 0.006, or 1% of the plane-
parallel albedo. Thus, for bounded cascade models hor-
izontal photon transport can safely be neglected in es-
timating the mesoscale-average albedo. For this pur-
pose, the IPA is highly accurate.

Although the bounded model is only weakly in-
homogeneous, with the variance strongly concentrated
in the largest scales, the resulting 15% albedo bias is
still potentially quite significant. If this albedo change
were applied globally, the equilibrium surface temper-
ature of the earth would drop below that of the last ice
age. Global circulation models currently avoid this
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FiG. 5. The independent pixel bias, defined as in Fig. 3, but now for nonconservative scattering (wo = 0.99 and 0.90),
showing not only reflectance (R) but also transmittance (T) and absorptance (A) for the f = 0.6, ¢ = 0.8 bounded model.
As in Fig. 3, the area-average curves are shown with *2¢ error bars, giving the 95% confidence interval for the area

average.

problem by simply adjusting cloud albedo directly,
without regard to liquid water content. A more physical
coupling of radiation and hydrology will require a more
realistic adjustment of the plane-parallel albedo esti-
mates. Although a 15% albedo adjustment is probably
typical for marine stratocumulus, tropical convective
and other more heterogeneous systems are likely to re-
quire more radical corrections.

In the IPA; fluxes depend only upon one-point sta-
tistics determined by the probability distribution of
optical thickness, such as the mean and variance of
its logarithm. The accuracy of the IPA decreases as
- more of the variance is distributed to the smaller
scales (so that the wavenumber spectrum falls off
more slowly). The singular model, for example, has
a k™! or flatter spectrum, and in this case the plane-
parallel bias becomes dominated by three-dimen-
sional effects in the limit of infinite cascades. Monte
Carlo approaches like the one used here are essential
in estimating radiative properties of models like the
singular model. Even in that case, however, the IPA
is useful in isolating the bias associated with truly
three-dimensional effects from that related only to

the shape of the probability distribution of optical
thickness.

An important observational result discussed in C1
is that the liquid water variability in marine strato-
cumulus is maximum when the cloud cover is max-
imum. Within-cloud variability therefore has more
impact on the area-averaged albedo than the cloud
fraction. One surprising consequence of this is that,
during the diurnal cycle of marine stratocumulus,
plane-parallel albedo estimates are most in error
when the cloud fraction is nearly 100%. That is, the
plane-parallel albedo is least accurate when the con-
ventional cloud fraction corrections to it vanish!
Clearly, the parameterization of cloudiness in global
climate models must include not only cloud fraction,
but also the within-cloud fractal structure, which
strongly influences the area-averaged albedo and
thus the large-scale climate.

While we have most extensively studied one-dimen-
sional (1D) fractal variability shown by the cloud
streets in Fig. 1, we have discussed more general
bounded cascades having-two-dimensional horizontal
variability (2D), and both vertical and horizontal vari-
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ability (3D). For the same parameter values as in Fig.
2, we have verified that the mean of the IPA errors
remains small in 2D, though local errors become more
spread out than in 1D, because of photon diffusion
around optically thick regions (see Cahalan 1994). We
speculate that vertical variability is less important for
stratocumulus, since most liquid water is within a pho-
ton mean free path of the cloud top, and previous results
find that mean fluxes are insensitive to such variability.
For cloud types having significant vertical develop-
ment, however, we expect large-scale radiative prop-
erties to become sensitive to vertical structure. In that
case both sides of the energy balance are likely to be-
come sensitive functions of the fractal structure—em-
issivity as well as reflectivity. The dependence of net
radiation in deep convective systems on the fractal
structure of such systems will be an important question
for further research.
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APPENDIX A
Computational Enhancements
a. Vectorization

Complexity arises in Monte Carlo calculations pri-
marily when geometry is complicated, that is, when
photons exploring different cloud regions find very dif-
ferent environments. Due to the relative simplicity of
the cloud geometry we have specified and that only a

10, wo =1, g

few types of primitive events need to be considered,
photons in each region of the cloud and at each order
of scatter repeat similar patterns. They move indepen-
dently of each other and the scattering process depends
solely on photon position, direction, and the local scat-
tering opacity. This is an ideal situation for vectoriza-
tion, and the simulation can be made to proceed rapidly
on a vector machine (the Cray-YMP) by grouping pho-
tons in batches of several thousand. All move in unison
through each successive order of scatter until they exit
(none are explicitly absorbed in our model). A list of
““still active’’ photons is maintained and updated at
each order of scatter. Photons not appearing on the list
are held fixed at their points of exit (effectively ig-
nored). On a vector processing computer, the list
serves either to gather active photons into vectors or to
mask vectors when updating photon positions, direc-
tions, etc.

b. Residual photons

Vectorization has allowed us to process photons at
rates 10—100 times faster than comparable scalar sim-
ulations. However, there are two obstacles we have en-
countered that must be overcome in order to vectorize
the process successfully. The first, eliminating photons
that linger within the cloud after a large number of
scatters, is common to all Monte Carlo simulations but
is a particular problem for vectorized models. As the
still active list becomes short, the advantages of vector
processing are eroded, and the simulation expends a
disproportionate amount of computational effort on a
minute proportion of the radiative flux. We have ap-
plied an unsophisticated criterion, simply truncating the
calculation at a high order of scatter when the remain-
ing photons represent less than 0.5% of the initial flux.
For the purpose of computing cloud field albedo, resid-
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ual photons (those still inside) are divided evenly be-
tween reflected and transmitted fluxes. Their total path-
lengths are set equal to that of their simulated paths to
their current positions. The error in pathlength in ap-
plying this approximation is not important for the
longer paths of these photons.

¢. Reducing boundary crossing

A second, more subtle, difficulty in efficient vecto-
rization is presented by regions of low optical density.
In a homogenous cloud one could make computational
pixels large enough to give photons a significant prob-
ability of scatter within each pixel. However, in using
a uniform geometrical grid to define a highly inhom-
ogeneous optical density, some regions will contain
nearly transparent pixels. Furthermore, since variability
in the bounded model is smoother at smaller scales, a
transparent pixel typically has many contiguous pixels
nearly as (or more ) transparent. Photons crossing these
transparent regions (particularly those traveling nearly
horizontally ) will cross many pixel boundaries before
reaching their next point of scatter. As a result, much
time is spent tracking straight lines through nearly
transparent cloud regions. Most photons reach their
next scattering point and wait, while a relative few are
still crossing boundaries.

We have overcome this problem by reducing the
number of boundary crossings. Photons are permitted
to cross pairs of adjacent pixels where the combined
“superpixel’” is defined to have an optical density
equal to the average of the two component pixels.
There is no approximation in this procedure provided
the photon has equal geometrical pathlength in each
pixel. Pixel merging is continued in a hierarchical fash-
ion as long as there are some regions where photons
are moving across these superpixels.

The pixel merging is done as follows: After a scatter
event photons are moved along individual trajectories
to the next boundary. Those that fall on a superboun-
dary are held fixed, while those at the middle of su-
perpixels are transmitted along their trajectories to the
appropriate boundary. Any photons that would reach a
scatter point before the next boundary are left at their
positions. The next level of superpixels is defined in
the same fashion, based on the current level,-and the
identical process is repeated, again only for those pho-
tons that have not accumulated sufficient optical path
to reach the next scatter. Pixel merging is stopped when
no photons are moving. At this point the entire process
is reversed, superpixels are split, and photons moved
to superpixel midpoints, etc., until all photons finally
are held at the boundary just before their next scatter
point. They traverse to the last scatter through the orig-
inal pixel structure in order that pathlength is computed
correctly over this shorter path segment.

This hierarchical scheme reduces the computational
effort from a linear to a logarithmic dependence on the
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maximum number of boundary crossings. This can be
particularly important in cases where some pixels are
completely clear. For example, the hierarchical scheme
allows us to compare results for a fractal cloud field to
other models having finite clouds embedded in a clear
atmosphere. ‘

APPENDIX B
Monte Carlo Statistical Errors
a. Plane-parallel example

The direct Monte Carlo method provides estimates
of the radiative flux F, to be measured through any
defined surface and prescribed solid angle. Flux esti-
mates are quantized in terms of photon counts, with
each photon representing a single flux quantum, that is,
a fixed fraction of the incident solar radiative flux Fj.
The flux estimate and its associated error are computed
directly from the number of photons N, that contribute
to the radiative flux from a total of N, incident photons
being simulated.

Normalizing the incident flux F, = 1, the quantity
1/N, represents the single photon flux quantum. If P is
the probability that an incident photon will contribute
to the flux being estimated, then that flux must be F,
= PF, = P. The Monte Carlo estimate for this flux is
given by the ratio N,/N,. The expected variance of this
ratio is computed as usual for N, Bernoulli trials each
of probability P, as P(1 — P)/N,. Substituting the es-
timate P — N,/N, gives this variance as N,(N
— N,)/N3}. The ratio of this standard deviation to the
computed flux defines the relative error in the flux,
which gives '

1 — P\!2 1 — P\!”? N, — N 172
E, — - ~ ~ 0 r ,
NP N, NyN,

(BI)

showing the usual ~N;'? relationship. The relative
error is determined directly by the number N, of pho-
tons that contribute. From this relationship it is clear
that, if the estimated flux is a very small fraction of the
incident flux, that is, P < 1, the number of incident
photons N, must be quite large.

Fortunately, area-averaged hemispherical radiative
fluxes are well estimated by the simulation process. In
estimating the reflected flux from a cloud field, for in-
stance, P is equal to the cloud field albedo, which is
not small compared to unity. For example, if one per-
forms a typical short simulation for a homogeneous
cloud of 2!? cells with albedo 0.5, 100 incident photons
might be directed at each cloud cell for a total Ny
= 409 600. Estimates of the local reflectivity for any
single cell would have a relative error of about 10%.
However, the mean cloud field albedo computed from
the same simulation has a statistical error 64 times
smaller or about 0.2%. A realistic simulation using 6.25
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million photons would compute the cloud field albedo
to within 0.04%, giving a result of 0.5000 = 0.0002.
If one requires more detailed spatial and directional
information, however, the quality of the radiation es-
timate will be degraded as P =~ N,/N, becomes smaller
with fewer photons contributing. If one chooses to
‘‘zoom in’’ for very detailed measurement of the an-
gular or spatial dependence of the radiation field at
cloud top, for instance, one must rely on contributions
from relatively rare events. Using the direct method
these estimates are noisy and require a large number of
photons at the outset for acceptable statistical error. An
alternative for obtaining detailed spatial or angular in-
formation is to use variance reduction methods de-
signed to focus computational resources on the small
percentage of photons that are likely to contribute.
However, because we are most interested in cloud field
albedo and radiative fluxes, we have, for the purposes
of this study, limited ourselves to the direct method.

b. Fractal model statistical errors

The inhomogeneous cloud problem requires speci-
fication of a horizontal scale for the width of individual
cloud cells. If the scale is large, the radiative transfer
problem becomes simply 2'* decoupled homogeneous
cloud problems. This is the limit where the independent
pixel approximation applies exactly. At the other ex-
treme, if the cell width is small in terms of photon mean
free paths, photons cross many cell boundaries and they
will sample a distribution of local opacities. We are
interested in estimating both the cloud field albedo and
the apparent brightness of individual cells or clusters
of cells for a range of cell horizontal scales.

The cloud field is assumed to be uniformly illumi-
nated. It can be shown that sampling error for estimat-
ing total cloud field albedo is reduced if each cloud cell
is illuminated with a number of photons proportionate
to the total. We treat the problem as M = 2'* parallel
simulations and count photons exiting from the top of
each cloud cell irrespective of the cell where each was
incident. We assume that N§ = N,/M photons illumi-
nate each of the M cells and that P’ is the probability
that a photon illuminating the ith cell contributes to the
albedo by emerging from cloud top. The cloud field
albedo A is given by

1 .
A=—> P =P, B2
ME,.: (B2)
with total variance V given by
1 «P[1-P] P[1-P]
V== . =< B3
M? N§ = Ny (B3)

The latter inequality is an equality if all ' = P, which
is true in the homogeneous cloud limit only. For the
inhomogeneous fractal cloud model
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Ny — N /2
E, ~ o Y
NoN,

represents an upper bound on the relative error.

In estimating the brightness or apparent albedo from
a single cell k when all cells are uniformly illuminated,
P* < 1 so that the error ratio E, =~ N;'/2, but N, will
be a very small fraction of N,. A better estimate of the
local brightness comes from grouping 16—64 cells to-
gether in order to reduce the error ratio by a factor of
4—8 or more.
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